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A B S T R A C T   

The COVID-19 pandemic continues to threaten global public health. Reliable assessment of community 
vulnerability is therefore essential to fighting and mitigating the pandemic. This study presents a framework that 
considers the roles of internal and external factors, including the components of social vulnerability, exposure, 
and sensitivity, to comprehensively and accurately assess community vulnerability to the pandemic. With respect 
to internal factors, we summarized the inherent social characteristics of people groups using census data and 
explored the roles of both overall and four major thematic social vulnerabilities in shaping community infection 
by COVID-19. We then designed two external factors to characterize exposure and sensitivity and implemented 
an aggregation by multiplying them with the internal social vulnerability to achieve a comprehensive vulner
ability assessment. The role of the estimated vulnerability in shaping community infection was evaluated by 
statistical and spatial analysis as well as by risk factor classification using defined rules. This case study of Hong 
Kong demonstrated the value of our framework in vulnerability assessment and revealed the role of vulnerability 
in shaping community infection by COVID-19.   

1. Introduction 

As a novel contagious disease, COVID-19 has rapidly spread acute 
respiratory syndrome in human beings (Zhou et al., 2020b). Its high 
transmissibility still affects most countries and has paralyzed the world, 
causing the World Health Organization to declare it a pandemic in 
March 2020 (World Health Organisation, 2020a). Various challenges 
have inevitably emerged, such as intense pressure on global health 
systems (Lal et al., 2021), social isolation and psychological trauma 
(Calbi et al., 2021; Sheffler, Joiner and Sachs-Ericsson, 2021), and un
equal effects on vulnerable groups (Herrmann, Nielsen and Aguilar- 
Raab, 2021; Malard et al., 2020; Shen et al., 2021). Governments have 
had to maintain a high degree of vigilance and transform relatively fixed 
modes of operation into adaptive ones (Allain-Dupré et al., 2020). 
Various adaptive countermeasures have been implemented, including 
social distancing policies, school closures, factory closures, and even 
lockdowns (Hale et al., 2021). This has created a need for a reference 
around which to formulate adaptive countermeasures (Huang et al., 
2021). Effective assessment of community vulnerability to COVID-19 is 

therefore of great importance in designing adaptive responses that 
support the WHO public health axiom of “detect, protect and treat” 
(Smith and Judd, 2020; World Health Organisation, 2020b). 

Vulnerability is viewed as the harm proneness of people and assets if 
exposed to hazard events (Turner et al., 2003). Components of vulner
ability can vary in different hazard contexts. With respect to COVID-19, 
it is thought to consist of three factors: exposure, sensitivity, and social 
vulnerability (Costa and Kropp, 2012). Exposure indicates the degree to 
which people and assets are exposed to harm (Frazier, Thompson and 
Dezzani, 2014; Pluchino et al., 2021), sensitivity is the extent to which 
system features respond to hazards (Zacharias and Gregr, 2005), and 
social vulnerability pertains to the capability of groups with different 
social, economic, demographic, and geographic characteristics to 
withstand risk (Cutter et al., 2003; Cutter and Finch, 2008; Kim and 
Bostwick, 2020). We consider the effective assessment of vulnerability 
as essential to assisting COVID-19 risk management. Related studies 
have fallen into three categories. 

First, researchers have analyzed the correlation between internal 
factors (i.e., social vulnerability) and COVID-19 risk. They have 
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typically concluded that groups and communities with more vulnerable 
social demographic characteristics suffer from higher infections and 
deaths. For example, impoverished people may lack medical insurance 
and be unable to afford medical expenses, leading to higher mortality 
rates(Baena-Diez et al., 2020; Bong et al., 2020). Minority groups with 
low social status may cluster in areas with poor public health conditions 
which increases their infection risk (Cordes and Castro, 2020; Franch- 
Pardo et al., 2020). People with poor immunity or comorbidities also 
have a higher mortality risk (Grasselli et al., 2020; Shi et al., 2020). 

Second, research has aimed to account for external factors to provide 
a comprehensive assessment of vulnerability, which usually emphasizes 
exposure. For example, this has been accomplished by combining factors 
related to COVID-19 infection or mortality (such as public exposure and 
health system capacity) with those related to social vulnerability 
(Acharya and Porwal, 2020; Kiaghadi, Rifai and Liaw, 2020; Sarkar and 
Chouhan, 2021). The combination is typically performed through a 
summation aggregation operation, such as the equal weight summation 
or PCA (Principal Component Analysis) (Flanagan et al., 2011; Kim and 
Bostwick, 2020; Sarkar and Chouhan, 2021). Few studies have used 
multiplication for aggregation (Pluchino et al., 2021) to consider the 
interaction effects of internal and external factors. 

The third category of research has emphasized extracting the char
acteristics of historical cases to improve risk management, which elu
cidates the role of sensitivity in vulnerability. For example, by analyzing 
the spatial trajectories and distribution of confirmed cases, researchers 
have detected places with higher infection risk, such as grocery stores, 
gyms, restaurants, and offices. (Jiang et al., 2021; Sun et al., 2020; Zhou 
et al., 2020a). This category of research has expanded the view of 
external factors. Although the indicators used improve risk warning and 
management by using empirical information derived from the current 
epidemic, perspectives remain incomplete due to a lack of internal 
factors. 

In summary, the first category of research has primarily used 
inherent social vulnerability to reveal the unequal capabilities of people 
or communities to cope with risk. However, it is essentially an inherent 
factor that weakens its applicability in specific hazards, such as the 
COVID-19. The second category of research has addressed the impor
tance of external exposure factors using the aggregation of both social 
and exposure factors. The aggregation is usually in the form of sum
mation that weakens the interaction effects between the internal and 
external factors. Few studies are aware of this and have used multipli
cation. This type of research has greatly contributed to vulnerability 
assessment, while it ignores the historical analysis needed for realistic 
risk management of COVID-19, as in the sensitivity-focused research in 
the third category. Based on these previous studies, we aimed to develop 
a framework that integrates social vulnerability, exposure, and sensi
tivity to comprehensively assess community vulnerability to COVID-19 
for effective risk management. 

The framework consists of three parts. The first part includes 
selecting and calculating indicators related to social vulnerability, 
exposure, and sensitivity. These indicators will then be used to 
comprehensively assess vulnerability in the second part. Finally, we will 
evaluate the effectiveness of the framework and explore the roles of 
vulnerability in shaping community infection risk of COVID-19. By 
applying this framework to the case of Hong Kong, our study contributes 
in threefold aspects: (1) theoretically, it demonstrates the value of all 
considerations of internal social vulnerability, external exposure, and 
realistic sensitivity components for a robust and comprehensive assess
ment of vulnerability, (2) methodologically, it proposes a feasible 
framework and reveals the aggregation mechanism of the aforemen
tioned three components of vulnerability assessment, and (3) in terms of 
social meaning, it can identify vulnerable areas and explore the role of 
vulnerability in community infection by COVID-19 to draw risk man
agement suggestions. 

2. Study area and data description 

Hong Kong is a city and special administrative region of China with 
over 7.5 million residents living in a territory of 1,104 km2. The territory 
contains 3 regions subdivided into 18 districts for administrative man
agement. It also contains 9 new towns developed to cope with popula
tion growth, as shown in Fig. 1(1). We chose Hong Kong as a research 
case for three reasons. First, Hong Kong has serious wealth disparity, 
with a Gini coefficient exceeds 0.539, far exceeding the 0.4 inequality 
line (Central Intelligence Agency, 2016). This suggests that Hong Kong 
has disadvantaged groups or areas necessary to study social vulnera
bility. Second, Hong Kong is the fourth most densely populated areas in 
the world with packed housing and mobility conditions, which greatly 
increases the likelihood of risk exposure and facilitates the study of the 
impact of external factors in the context of COVID-19. In addition, 
effective but costly countermeasures such as complete lockdowns have 
created a dilemma for Hong Kong due to its position as financial center 
and commercial port. Despite experiencing four waves of COVID-19 
over the past two years, the city has never completely closed. These 
factors illustrate the importance of making an accessible and reliable 
assessment of community vulnerability to assist COVID-19 risk man
agement in Hong Kong. 

This study used the following four datasets. 
(1) Hong Kong Tertiary Planning Units. 
To investigate the spatial variance in assessed community vulnera

bility, data on the 291 Tertiary Planning Units (TPUs) set by the Plan
ning Department are used as basic scale for the community (Fig. 1(2)). 
TPUs are distributed over the whole territory of Hong Kong and 
commonly utilized to support fine-grained urban studies. These data are 
publicly available from the website DATA.GOV.HK (Boundaries of 
Tertiary Planning Units & Street Blocks / Village Clusters |DATA.GOV. 
HK). 

(2) COVID-19 infection situation in Hong Kong. 
To fight the COVID-19 pandemic, the Department of Health created a 

platform (COVID-19 Thematic Website - Together, We Fight the Virus - 
Home (coronavirus.gov.hk)) to give daily updates on infections. We 
have compiled 11,971 released confirmed cases from January 23, 2020, 
to July 22, 2021 (Table 1). After eliminating data with missing locations, 
our final dataset contained 10,089 cases, which is the total number of 
daily cases during the data collection period, and each case has a valid 
location information. 

(3) 2016 Hong Kong census information. 
Calculating social vulnerability requires sociodemographic charac

teristics to represent internal factors. We thus collected social, eco
nomic, demographic, and housing data from the latest census in 2016 
provided by the Census and Statistics Department (2016 Population 
By-census (bycensus2016.gov.hk)). 

(4) Public transportation data of Hong Kong. 
Hong Kong has a highly developed public transportation system, 

which serves as a popular means of daily travel. However, in the context 
of COVID-19, public transport in areas with a high population densi
ty may put people at high risk of exposure. Our study therefore 
considered public transport data including MTR, Franchised Buses, and 
Minibuses. 

Hong Kong’s extensive railway network, the MTR, forms the back
bone of the public transport system. The highly developed public bus 
system complements the railway network and runs in places that the 
railway cannot reach. Franchised Buses, the main component of the bus 
system, have comparable passenger capacity to the railway. Minibuses 
offer a feeder service and serve areas with relatively low passenger de
mand or where the use of high-capacity transport modes is not suitable. 
Minibuses contain the Green Minibuses (GMBs) and Red Minibuses 
(RMBs). The latter were excluded from the study as they do not operate 
fixed service routes. 

We downloaded the latest geodata of Franchised Bus stations and 
GMB stations from the Hong Kong Geodata Store website (Hong Kong 
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GeoData Store), and all MTR stations were geocoded from Google Maps. 
Table 2 shows the public transportation information and statistics of the 
number of vehicles and capacity per day, published in Public Transport 
Strategy Study 2017 (Transport and Housing Bureau, 2017). 

3. Method 

To assess community vulnerability to COVID-19 for risk manage
ment, we developed a framework that included four main modules: in
dicator selection and calculation, social vulnerability estimation, 
vulnerability assessment, and influence evaluation of vulnerability on 
infection (Fig. 2). 

(1) Indicator selection and calculation. 
Our study aimed to construct a comprehensive assessment of com

munity vulnerability to COVID-19 with components of internal social 
vulnerability, external exposure, and realistic sensitivity. 

Based on available data and previous studies (CDC/ATSDR, 2018; 
Song et al., 2020; Tiwari et al., 2021), we first selected 11 sociodemo
graphic indicators from the census data for use in the social vulnerability 
assessment. These indicators were further divided into four themes for 
theme-related vulnerability assessment, including socioeconomic status, 
household composition, minority status and language, and housing 
conditions (CDC/ATSDR, 2018). Details and calculations of these in
dicators are shown in Table 3. 

Given that COVID-19 is an infectious respiratory disease that spreads 
easily in high exposure areas and Hong Kong has packed housing and 
mobility conditions, we considered that not only the high population 
size as traditional studies adopted (Pluchino et al., 2021), but also the 
crowding experience in public transport may put people at high risk. 
Public transport load was calculated as an indicator by dividing popu
lation size by the number of public transport stations, as shown in 
Equation (1). The percentile rank of the load was then calculated to 
eliminate the influence of magnitude differences. Considering the dif
ferences in capacity for the transport types described in Table 2, weights 
were further assigned by their per day capacity, as shown in Equation 
(2). 

TLit =
Pi

Tit
(1) 

where TLit represents the population load of type t public transport in 
TPU i, Pi signifies the population in TPU i, and Tit is the number of sta
tions of type t public transport in TPU i. 

TL Prit =
rTL it − 1

Nt − 1
× Ct (2) 

where TL Prit represents the weighted percentile rank of the load of 
type t public transport in TPU i, rTL it signifies the rank of the load of type 
t public transport in TPU i, Nt is the total number of TPUs containing 
type t public transport stations, and Ct signifies the per day capacity of 
type t public transport. 

To realistically assess community sensitivity to COVID-19, we 
considered the age distribution of confirmed cases and assumed that the 

Fig. 1. (1) Study area and administrative divisions. Tsuen Wan New Town covers Tsuen Wan, Kwai Chung, and Tsing Yi Island; Sha Tin New Town includes Sha Tin 
and Ma On Shan. (2) Spatial division of Tertiary Planning Units (TPUs). 

Table 1 
Information dictionary of confirmed cases.  

ID Item Description/Value 

1 Case No. Number, the unique ID of reported case 
2 Report date Report date 
3 Onset date Onset date / Unknown / Asymptomatic 
4 Gender Female / Male 
5 Age Number 
6 Resident HK resident / non-HK resident 
7 Case 

classification 
Imported case / Local case / Possibly local case/ 
Epidemiologically linked with imported case/ 
Epidemiologically linked with local case/ 
Epidemiologically linked with possibly local case 

8 Type Confirmed / Probable 
9 Status Hospitalized / Discharged / Deceased / No admission 
10 Building name The buildings of confirmed / probable cases lived or 

stayed 
11 Locations Geocoded coordinates of relevant buildings 
12 Related cases IDs of cases related to current case  

Table 2 
Information on public transportation.  

Type Lines/ 
routes 

Stations Number of 
vehicles 

Capacity per 
day 

MTR 10 lines 98 – 4.7 million 
Franchised 

Buses 
580 routes 4268 5800 4.1 million 

GMBs 530 routes 656 3267 1.2 million  
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more sensitive the area to COVID-19, the more consistent the age dis
tribution of confirmed cases would be with that of the community 
population. The basis for this assumption is that in the early stages of the 
spread, there were more infections between people of similar age, given 
the high likelihood of interactions. Then, as the pandemic spreads and 
evolves, this age bias broke down, and the distribution approached the 
age distribution of the community population. This assumption is 
explored more thoroughly in the discussion section. Here, we focus on 
the measurement of the sensitivity. 

The main idea is to measure the variation in confirmed cases by age 
based on the age grouping criteria in the census data. We first calculated 
the ratio of confirmed cases in each age group to the total number of 
people in that age group. Then, the uniformity of the ratios of each TPU 
was measured to reflect the realistic sensitivity to COVID-19. In high- 
sensitivity areas, there was generally high uniformity that indicated 
broader exposure among age groups, while the opposite was true of low- 
sensitivity areas. These calculations were accomplished using Equations 
(3) and (4). 

mi =

∑
a

cia
Pia

n
(3) 

where mi represents the mean of the ratios in TPU i, Pia signifies the 
population size of age group a in TPU i, cia indicates the number of 
confirmed cases of age group a in TPU i, and n is the number of age 
groups, which was 5 in our data. 

stdi =

∑
a

(
cia
Pia

− mi

)2

n − 1
(4) 

where stdi represents the standard deviation of the ratios in TPU i and 
the other variables are as previously stated. 

AUi =
mi

stdi
(5) 

where AUi represents the uniformity of confirmed cases by age dis
tribution in TPU i and the other variables are as previously stated. 

(2) Social vulnerability assessment. 
Social vulnerability is commonly assessed by constructing an index. 

Considering the unequal dimensions between indicators, such as the 
dimensional difference between, e.g., “income is 10000” and “house size 
is 50”, researchers used a ranking-based aggregation. The ranking 
operation can eliminate the problem of dimensionality and focuses on 
the differences among various research units, while a problem arises in 
those aggregations usually regard indicators as having equal weights 
(CDC/ATSDR, 2018; Kiaghadi et al., 2020). We recommended assigning 
weights to indicators before aggregation to address the varied impor
tance of indicators using principal component analysis (PCA). Con
structing the social vulnerability index then involved three steps: 
percentile rank calculation, weight calculation by PCA, and social 
vulnerability value calculation. 

1) Percentile rank calculation. 
Percentile rank was calculated for all of the selected indicators 

described in Table 3 according to Equation (6). 

Prij =
rij − 1
Nj − 1

(6) 

where Prij is the percentile rank of indicator j in TPU i, rij is the rank of 
indicator j in TPU i, and Nj is the total number of TPUs with indicator j. 
For indicators with a negative influence, the rank value was reversed. 

2) Defining weight by PCA. 
We performed a PCA on selected indicators in Table 3 to define their 

Fig. 2. Vulnerability assessment framework.  

Table 3 
Indicators of social vulnerability assessment.  

Theme Indicator Description Influence 

Socioeconomic 
status 

Low 
education 

Population over 15 years old 
with education below high 
school diploma (%) 

+

Poverty Population with monthly 
income below the poverty line 
(%) 

+

Income Per capital income – 
Household 

composition 
Elderly Population with age over 65 

(%) 
+

Single 
parent 

Households with one parent 
(%) 

+

Minority status and 
language 

Foreigner Population born outside 
HongKong/mainland China/ 
Macao/Taiwan  
(%) 

– 

English 
speaker 

Population whose usual 
language is English (%) 

– 

Mainlander Population born in mainland 
China (%) 

+

Housing condition Housing size Per housing area – 
Housing 
public 

Households living in public 
house (%) 

+

Rent Monthly rent of households –  
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weights. PCA is a common linear dimensionality reduction method that 
usually projects original data into lower dimensional space (Maćkiewicz 
and Ratajczak, 1993). In essence, the projection finds a linear combi
nation of original variables to acquire dimensional data. Coefficients of 
the linear combination reflect the correlation and contributions of which 
the original data projects to dimensional data. The overall importance of 
each indicator in this projection process is measured by the overall 
ratings of the coefficient of each indicator, which we regarded as the 
corresponding weight. 

Let X = [xij]p×s represent the centralized original data, where X is 
normalized by mean value, s is the total number of indicators, and p is 
the number of TPUs. Matrix PC = [pcik]p×m is the m components derived 
by PCA. L = [ljk]s×m signifies the principal axes, which represent the 
loadings of the original variables contributing to the corresponding 
principal components and parallel to the eigenvectors. E = [ek]1×m and 
Ep = [epk]m×1 are respectively the value and percentage of variance 
explained by each component in the PCA. From these, we calculated the 
weights of the indicators using Equations (7), (8) and (9). 

coef ′ =
[

ljk
̅̅̅̅ek

√

]

s×m
, j ∈ {1, 2,⋯, s}&k ∈ {1, 2,⋯,m} (7) 

where coef ′ is a matrix representing the score coefficient of each 
original variable to the PCA components, s is the total number of in
dicators, m signifies the number of components, ljk is the loading of the 
original indicator j to the projected component k, ek is the explained 
variance value by component k. 

coef =
coef ′ × Ep
∑m

k=1epk
=

[
coef j

]

1×s (8) 

where coef is the comprehensive score coefficient that represents the 
overall contribution of each variable to the PCA components, epk is the 
percentage of explained variance by component k and the other vari
ables are as previously stated. 

weightj =
coef j

∑s
j=1coef j

(9) 

where weightj is the normalized weight of indicator j to the result of 
the PCA and the other variables are as previously stated. 

The Kaiser-Meyer-Olkin (KMO) (Cureton and D’Agostino, 1993) 
measure and Bartlett’s Test of Sphericity (Bartlett, 1951) were per
formed on the indicators before the PCA to demonstrate the strong 
correlations between the variables. The KMO tests the strength of the 
partial correlation between variables, which determines how suited data 
is for factor analysis. The value of KMO close to 1.0 indicates a strong 
suitability for factor analysis, and that less than 0.5 is unacceptable. 
Bartlett’s Test of Sphericity tests the hypothesis that selected variables 
are irrelevant and not suitable for factor analysis. A significance value of 
less than 0.05 disproves this hypothesis and supports the inclusion of the 
tested variables. Typically, a KMO value greater than 0.7 and a signifi
cance value of Bartlett’s Test of Sphericity less than 0.05 are regarded as 
standards for PCA. 

3) Social vulnerability value calculation. 
After calculating the percentile rank and PCA weight, we aggregated 

the indicators of different social themes to obtain the thematic social 
vulnerability of each TPU i according to Equation (10). We then 
aggregated the thematic social vulnerability values to obtain the overall 
social vulnerability value, as in Equation (11). 

SViz =
∑

zj
Prizj × weightzj (10) 

where z represents the four themes in Table 3, SViz signifies the social 
vulnerability value of TPU i estimated based on the indicators of theme 
z, and weightzj is the weight of indicator j of theme z derived by the PCA. 

SVi =
∑

z
SViz (11) 

where SVi is the overall social vulnerability value of TPU i and the 
other variables are as previously stated. 

(3) Vulnerability assessment. 
The comprehensive calculation of vulnerability should aggregate all 

the above indicators. As discussed earlier, summation and multiplication 
are two main methods of aggregation (Flanagan et al., 2011; Kim and 
Bostwick, 2020; Pluchino et al., 2021; Sarkar and Chouhan, 2021). In 
Equation (12), without loss of generality, the external exposure and 
realistic sensitivity components were combined with social vulnerability 
by a multiplication operation. 

BVi = SVi ×
∑

t
TL Prit × AUi (12) 

where BVi is the vulnerability value of TPU i, TL Prit represents the 
weighted percentile rank of the load of type t public transport in TPU i as 
shown in Equation (2), AUi represents the uniformity of confirmed cases 
by age distribution in TPU i as shown in Equation (5), and SVi is the 
overall social vulnerability value of TPU i as shown in Equation (11). 

(4) Influence evaluation of vulnerability on infection. 
To evaluate the role of vulnerability in shaping community infection, 

our framework analyzed both the correlations between vulnerabilities 
and the current COVID-19 situation using Spearman test (Spearman, 
1961), as well as their spatial distribution patterns to provide insight 
into risk management. The number of confirmed cases was used as the 
indicator of COVID-19 situation. The correlations aimed to infer which 
types of factors had a greater impact on risk, while the spatial analysis 
explored the spatial variances in the different vulnerability factors. We 
then defined the rules identified by the indicators to classify vulnerable 
areas. Let Ri =

(
r1, r2,⋯, rf

)
as the classified risk type of TPU i, where rf 

is the symbol of TPU i on rule f . For example, if the uniformity of age 
distribution is an identified rule represented by f , then rf = 1 means that 
the sensitivity factor is vulnerable in TPU i, and otherwise rf = 0. By this 
approach and spatial overlay, all vulnerable TPUs returned a set of rule 
sequences to support the classification of risk types that were relevant to 
risk management. 

4. Results 

Based on the modules in our framework, we analyzed our results in 
four parts. The first two parts focused on correlation analysis. Specif
ically, the first part analyzed the correlation between the COVID-19 
situation and social vulnerability, while the second part analyzed its 
correlation with vulnerability with consideration of external factors. In 
the third part, we analyzed the spatial distributions of the results related 
to the first two parts. The fourth part focused on the classification and 
investigation of areas of high infection risk to formulate suggestions for 
risk management. 

(1) Thematic and overall social vulnerability. 
By applying the previously described method to selected indicators, 

we assessed the social vulnerability in Hong Kong. The PCA-related 
statistics are shown in Table 4. The P-value of Bartlett’s Test of Sphe
ricity was less than 0.05, and the KMO value was 0.85 (greater than 0.7), 

Table 4 
Statistics of PCA related tests.  

Feasibility test P-value of Bartlett’s Test of Sphericity 0.00 
KMO 0.85 

Explained variance Principal Component 1  6.95 
Principal Component 2  1.06 

Explained variance ratio Principal Component 1  62.9 % 
Principal Component 2  9.6 % 
Cumulation  72.5 %  
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demonstrating that the PCA was applicable to our selected indicators. To 
keep enough variability, we selected the first two principal components 
which has an explained variance greater than 1 (Girden, 1996). The 
selected components have cumulatively explained 72.5 % of the vari
ance ratio which is acceptable. 

The indicator weights obtained by the PCA are shown in Table 5. We 
calculated the thematic and overall value of social vulnerability in Hong 
Kong by applying this set of weights to the percentile rank values of the 
indicators using Equations (10)-(11). Table 6 shows their correlations 
with COVID-19 situation. 

Both the overall and thematic values of social vulnerability had 
moderate correlations with the COVID-19 situation (Table 6), while 
different types of social vulnerability had different prominence in the 
correlations, even if they were not far apart. Areas with vulnerable so
cioeconomic status and vulnerable minority status and language may 
not have a prominently higher correlation to the number of confirmed 
cases but had a higher risk of mortality once diagnosed. Conversely, 
areas with vulnerable household composition and vulnerable housing 
conditions showed the opposite pattern. Compared to be infected, 
vulnerable minority or socioeconomic status is more disadvantage in 
treating the pandemic due to incomplete medical protection and limited 
savings. Household composition and housing condition are factors 
related to external environment to a certain extent, making them more 
relevant to the differences in the number of confirmed cases. 

The above findings preliminary showed that factors linked to the 
external environment were more related to infection, although it is not 
prominent enough currently. We will explore this phenomenon in the 
following section. 

(2) Vulnerability with consideration of external factors. 
The vulnerability measure was combined external exposure and 

realistic sensitivity to COVID-19 using Equation (12) to achieve a 
comprehensive assessment. The correlations of assessed vulnerabilities 
with COVID-19 situation are shown in Fig. 3. Given that the external 
factors more greatly influenced the number of confirmed cases, but not 
fatalities, Fig. 3 only shows the correlation values for the number of 
confirmed cases. 

These results show that external factors certainly affected COVID-19 
infection. By comparing elements vertically, the correlation values 
incrementally increased when considering the external factors. The 
correlation value between overall vulnerability and the number of 
confirmed cases increased from 0.48 to 0.68 or 0.74, and then to 0.79, 
revealing that the consideration of external factors is effective in 
comprehensively revealing COVID-19 infection risk. 

External factors also had a stronger relationship to confirmed cases 
than internal factors. Comparing different elements horizontally showed 
that the correlation values related to overall vulnerability were lower 
than those related to housing condition and exposure, the latter of which 
was the highest. The value located at (BV (ep), exposure) was 0.72, 
while that at (BV (ep), overall) was 0.68. This result suggests that only 
considering external exposure yielded a more effective risk assessment 
than when internal factors were included. The value at (BV (ep&rs), 

exposure), representing the correlation between the two external factors 
(i.e., exposure and sensitivity) combined result and the number of 
confirmed cases, was 0.85, exceeding that of (BV (ep&rs), overall), 
which considered internal factors. This result also indicates the greater 
power of external factors compared to internal factors. 

In addition, the results demonstrated the principle of multiplication 
among the components of social vulnerability, external exposure, and 
realistic sensitivity in vulnerability. Fig. 3 shows the result of the sum
mation in the “overall+” column, which was inferior to that of the 
“overall” column assessed by multiplication, thus verifying the effec
tiveness of the principle of multiplication. 

(3) Spatial distribution analysis of vulnerabilities. 
The spatial distribution elucidated the features of vulnerable areas 

and showed which combinations of components determined the COVID- 
19 situation in these areas (Figs. 4-7), revealing several findings. 

First, most results effectively identified areas with a high spatial 
agglomeration of confirmed cases. However, the factors leading to this 
high agglomeration differed. For example, the high-level vulnerable 
areas in the south of Kowloon region occurred in districts with both a 
high population size and poor housing conditions, such as the Wong Tai 
Sin and Kwun Tong districts, suggesting that these factors were the two 
main causes of infection in these areas. As one of the new town centers, 
Sha Tin district is well-developed, but high mobility and crowded 
housing conditions elevated the risk of infection. The wealthy Eastern 
district in the northeast of Hong Kong Island also contained high-risk 
and sub-high-risk areas. Its large wealth gap and high population den
sity placed vulnerable groups in this district at high risk, which also 
increased the risk of infection in the surrounding wealthy areas. 

Second, the results with external indicators considered produced 
more credible and robust assessment compared to the thematic social 
vulnerability, which were highly varied. For example, areas in the 
suburbs could have high-vulnerability socioeconomic status but 
medium-level housing conditions or even low-vulnerability household 
compositions. Downtown areas were less likely to have vulnerable social 
status, but high human mobility greatly increased risk, which was 
ignored by social vulnerability. The assessment of vulnerability with 
consideration of external indicators had substantial advantages in 
accurately identifying the risk levels of these areas. For example, some 
suburbs in the northern New Territories had sub-high or medium-level 
social vulnerability, but a low infection risk, which was observed best 
in the comprehensive vulnerability assessment. Therefore, by consid
ering both external exposure and realistic sensitivity, we produced 
credible and robust results. 

Third, the two external factors contained in the vulnerability 
assessment showed strengths in different ways. External exposure 
highlighted the role of residential clusters in the spread of infection. As 
shown in Fig. 5(4), a high exposure risk tended to occur in areas with 
high residential density, such as eastern Sha Tin district, which contains 
residential areas like City One. The realistic sensitivity to COVID-19 
helped identify which areas were more likely to form high-risk 

Table 5 
Weights of indicators.  

Theme Indicator Weight 

Socioeconomic status Low education  0.096 
Poverty  0.006 
Income  0.075 

Household composition Elderly  0.042 
Single parent  0.141 

Minority status and language Foreigner  0.106 
English speaker  0.090 
Mainlander  0.101 

Housing condition Housing size  0.076 
Housing public  0.142 
Rent  0.124  

Table 6 
Correlations of social vulnerability with the COVID-19 situation.  

Social Vulnerability Value COVID-19 Situation Correlation 

Overall  Number of confirmed cases  0.49*** 
Fatalities  0.51*** 

Socioeconomic status Number of confirmed cases  0.29*** 
Fatalities  0.40*** 

Minority status and language Number of confirmed cases  0.48*** 
Fatalities  0.52*** 

Household composition Number of confirmed cases  0.49*** 
Fatalities  0.47*** 

Housing condition  Number of confirmed cases  0.51*** 
Fatalities  0.49*** 

*, **, *** signifies that the p-value of Spearman’s test is less than 0.05, 0.01, and 
0.001, respectively. 
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Fig. 3. Correlations between the results of the vulnerabilities from different calculation schemes and the numbers of confirmed cases. “SV” represents social 
vulnerability, “BV (ep)” represents vulnerability with exposure considered. “BV (rs)” represents vulnerability with sensitivity considered, “BV (ep&rs)” represents 
vulnerability with both exposure and sensitivity considered. “overall” signifies the aggregated vulnerability value of the previously described method. “overall+” 
signifies the vulnerability results aggregated by summation. The “exposure” refers to indicators of external exposure. 

Fig. 4. Spatial distribution of social vulnerabilities. CPc signifies the correlation value and significance to confirmed cases, and CPf signifies to the fatalities.  
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transmission chains. As shown in Fig. 6(4), sensitive areas consistently 
occurred in the centers of Hong Kong’s new towns (i.e., the planned 
satellite towns shown in Fig. 1(1)). Regionally developed infrastructure 
and a greater distance from the central business district facilitated strong 
internal connections, making high-risk internal transmission chains 
more likely. 

Finally, housing conditions had a great influence on the infection 
risk. As shown in Figs. 4-7, most areas with crowded or poor housing 
conditions had more infections, including the commercial Sha Tin dis
trict, the affluent Eastern district, and the crowded Wong Tai Sin and 
Kwun Tong districts. Given the high infectiousness of COVID-19, 
crowded housing produced more family transmission, and lower sani
tary conditions in poor living facilities facilitated further infections. This 
result suggests that risk management should focus on people with poor 
housing conditions. 

The overall results aggregated by summation revealed areas with 
high levels of infections, but were not accurate in areas with other 
infection levels. This once again demonstrated that infection risk was 
determined by the multiplication of internal and external factors. 

(4) Results of the classification and investigation of high infection 
areas. 

Based on the previous correlation and spatial analysis, we defined 
four indicators as classification rules. The social status indicator was the 
sum of socioeconomic status, and minority status and language, which 
trended to reveal mortality risk. We then summed household 

composition and housing condition as the housing indicator, as they 
were internal factors with links to external infection. External exposure 
and realistic sensitivity were selected as the other two indicators. Areas 
including any indicator ranking in the first quantile were designated as 
high-risk areas and investigated. By performing spatial overlay and rule 
classification, results in Fig. 8 provide references for risk management. 

Targeted policies can be designed for areas with risk dominated by 
specific factors. When risk mainly arises from sensitivity, policies should 
focus on restricting or adjusting activities, such as reducing the offline 
operation of commercial facilities and encouraging online purchasing. 
For risk dominated by exposure, which was prevalent in the residential 
clusters, public facilities such as parks and swimming pools should be 
closed. When risk mainly arises from housing factors, facilities prone to 
hygienic infection such as elevators and garbage drop points should be 
regularly disinfected, and supplies can be provided by the government. 

For areas with risk dominated by several factors, policies must be 
more adaptive and effective. Fig. 8 shows that these areas were prone to 
be clusters, such that the multiplicative interactions of factors may spill 
into surrounding areas. In these cases, community lockdowns can be 
implemented and supplemented by targeted measures for specific 
factors. 

Besides, housing-related infection covered more areas than those 
linked to other factors in Hong Kong, more and enhanced policies for 
this factor should be developed. Conversely, areas with vulnerable social 
status but less external risk had considerably lower infection risk. 

Fig.5. Spatial distribution of vulnerabilities with consideration of external exposure. CP means the correlation value and significance to confirmed cases. + means 
the result was aggregated by summation. 
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In summary, the results demonstrate the feasibility of our method 
and indicate that the components of social vulnerability, external 
exposure, and realistic sensitivity shape COVID-19 infection risk by 
areas. Importantly, analyzing the vulnerability factors of areas provides 
valuable insights for risk management. 

5. Discussion 

This study constructed a framework for the comprehensive assess
ment of vulnerability to COVID-19 by considering the components of 
social vulnerability, exposure, and sensitivity. The sensitivity analysis 
assumed that the more sensitive the area to COVID-19, the stronger the 
transmission chain and also the more consistent the age distribution of 
confirmed cases with the age distribution of the community population. 
To verify this assumption, we analyzed the age distribution of confirmed 
cases in different pandemic stages according to the infection relation
ships provided in our data with non-null “related case” fields in Table 1. 
Measuring by pandemic stage, rather than by region, allowed us to avoid 
the problem of insufficient data with respect to infection relationships. 

We first filtered related data with non-null “related case” fields and 
divided them into corresponding stages of COVID-19 according to the 
date range in Table 7. A time interval was left between the early and 
outbreak stages as a buffer, and other stages are excluded. 

Then, we calculated the coefficient of variation of age among related 
case groups according to the age distribution of confirmed cases using 

Equation (13). 

coef r =
stdr

mr
(13) 

where mr signifies the mean value of age within related group r and 
stdr is the standard deviation of group r. coef r represents the coefficient 
of variation of age among confirmed cases. 

Fig. 9(2)-(4) show the age distribution of confirmed cases in different 
COVID-19 transmission stages. The distribution of the mean age of all 
confirmed cases and the population age distribution derived from the 
census were largely consistent, with the exception of those around the 
age of 40, indicating that COVID-19 in Hong Kong has widely spread 
among all age groups (Fig. 9(2)). The unusually large number of 
confirmed cases around the age of 40 may have been due to the 
importance of this group in infecting other age groups. People of this age 
typically commute more and have greater responsibilities regarding the 
care of children and the elderly, making them more likely to generate 
cross-age infections. 

To further explore the age features of confirmed cases, we compared 
the results of the early and outbreak stages. When focusing on the dis
tribution of the coefficient of variation of age, the early values 
(maximum around 0.8, most are less than 0.1) were generally smaller 
than the outbreak values (maximum around 1.2, most are around 0.2). 
This result indicates that the age variance between the early infected 
cases was smaller than that of outbreak cases, which supported our 
assumption. With respect to the distribution of mean age, that of 

Fig. 6. Spatial distribution of vulnerabilities with consideration of sensitivity. CP means the correlation value and significance to confirmed cases. + means the result 
was aggregated by summation. 
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outbreak cases was most consistent with the population age distribution 
of the census, indicating that the age distribution of confirmed cases in 
the outbreak stage was uniform. Therefore, the analysis of the age dis
tribution of confirmed cases in different stages of COVID-19 confirmed 
our assumption that there were more mutual infections between people 
of similar age in the early stages, but the age distribution of confirmed 
cases approached that of the community population as infections 
become wide-spread. 

6. Conclusion 

Reliable measurement of COVID-19 vulnerability is essential to risk 
management. Our study contributes to this emerging body of research 
by presenting a framework for assessing community vulnerability to 
offer a comprehensive explanation of observed differences in COVID-19 
severity. 

The framework consists of three parts. The first part focused on the 
selection and preprocessing of indicators for vulnerability assessment, 
including components of social vulnerability, exposure, and sensitivity. 
Social vulnerability examined the inherently social characteristics of 
people groups in fighting the pandemic. Exposure focused on external 
exposure risk based on the magnitudes of population and public trans
portation. Sensitivity showed the realistic transmission risk indicated by 
the uniformity of age distribution of confirmed cases based on our dis
cussed hypothesis, which proposed that higher sensitivity areas had 

stronger transmission chains and a more uniform age distribution of 
confirmed cases. In the second part of the framework, we implemented 
social vulnerability assessments with consideration of the roles of the
matic and overall social vulnerability in shaping the COVID-19 situa
tion. Considering the impact of external factors, we then 
comprehensively assessed vulnerability by designing factors that 
represent the external exposure risk and the realistic sensitivity to 
COVID-19 before aggregating them with social vulnerability. The third 
part evaluated the roles of vulnerability in shaping infection risk. Using 
statistical and spatial analysis, we first identified indicators that were 
relevant to infection risk, and then classified high infection areas by the 
composition of vulnerability factors. 

This case study on Hong Kong illustrates the feasibility and value of 
our framework in providing comprehensive vulnerability assessment for 
risk management. The results indicate that social vulnerability, external 
exposure, and realistic sensitivity shape community infection. Most 
factors effectively identified areas with high spatial agglomeration of 
confirmed cases, and the results showed that external factors were more 
influential than internal factors. In addition, the two external factors 
showed strengths in different ways. Exposure played a role in revealing 
the risks related to residential density, while realistic sensitivity was 
important to recognizing which areas were more likely to form high-risk 
transmission chains. Given that factors differed in their influences on 
infection, we classified the high infection areas and investigated their 
composition of related vulnerability factors to provide insights for risk 

Fig. 7. Spatial distribution of vulnerabilities with consideration of both external exposure and sensitivity. CP means the correlation value and significance to 
confirmed cases. + means the result is aggregated by summation. 
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management. 
The main findings point to several suggestions for risk prevention 

and management. First, considering the high sensitivity in the new 
towns, the government could formulate epidemic prevention strategies 
to adjust internal interaction activities, such as reducing the offline 
operation of shops and encouraging online purchasing. Second, in the 
early stages of the pandemic, people of the same age group as that with 
the most confirmed cases should be more vigilant. Also, tracking the 
trajectories of confirmed cases in the group of people aged around 40 
could help mitigate transmission across age groups. Third, focus should 
be placed on areas with vulnerable external factors. For example, for 
areas in which the risk mainly arises from exposure, such as residential 

clusters, public facilities could be closed. Fourth, due to the crowded 
housing in Hong Kong, housing-related infection was particularly 
influential, suggesting that relevant policies should be developed for 
mitigation. For example, facilities prone to hygienic infection such as 
elevators and garbage drop points should be disinfected. Fifth, for areas 
with risk dominated by several factors that could infect surrounding 
areas, lockdowns could be implemented and supplemented by targeted 
measures for specific factors. Lastly, areas with vulnerable social status 
but less external risk have considerably lower overall risk. 

Although, our study demonstrates the feasibility of assessing 
comprehensive vulnerability for risk management, it can be improved in 
some ways. First, a wider range of data would have facilitated more in- 
depth findings. For example, we did not explore more factors related to 
mortality risk due to the lack of medical facility data and comorbidity 
data. Second, the main data used were static census data, preventing the 
consideration of spatial interactions between areas. Third, our sensi
tivity factor only contained the uniformity of age distribution, and social 
vulnerability did not consider human and policy responses. Fourth, 
dynamic human mobility could be taken into consideration for a more 
effective exposure factor assessment if the data are available. All of these 
issues should be addressed in future research. 

Fig. 8. Factor classification of vulnerable and high infection areas. Q1 signifies the first quantile.  

Table 7 
Date range division of COVID-19 stages in Hong Kong.  

Date Range of Early Stage Date Range of Outbreak Stage 

Beginning End Beginning End 

2020.01.21 2020.03.10 2020.03.14 2020.03.23 
2020.04.12 2020.05.15 2020.05.23 2020.08.17 
2020.09.15 2020.10.23 2020.11.08 2021.01.31  
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