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A B S T R A C T

Increasing exposure to heatwaves threatens public health, challenging various socioeconomic sectors in the 
coming decades. Prior studies mostly concentrated on the heatwaves occurring in specific regions by examining 
temperature durations, ignoring the fact that heatwaves typically swept across a large area. To comprehensively 
assess the effects of heatwaves, we jointly analyzed public attention to heatwaves using a dataset of over 10 
million geo-located Weibo tweets across 321 cities in China. By considering spatial disparities, two kinds of 
public attention at city level, namely the number of heat-related tweets (NHTs) and the ratio of heat-related 
tweets (RHTs), were designed to indicate the severity and location of heatwave impacts, respectively. The 
heat cumulative intensity was used as a proxy for heatwaves, which exhibited more significant correlations with 
RHTs than NHTs. The multiscale geographically weighted regression (MGWR) model was employed to investi-
gate the spatiotemporal variations of environment, demographic, and economic-social factors. Six city groups 
were clustered with MGWR coefficients that were consistent with the seven geographic subregions of China. This 
research provides a new perspective and methodology for public attention to heatwaves using geo-located social 
sensing data and highlights the need for actions to mitigate future heatwave stress in sensitive cities.

1. Introduction

Persistent temperature extremes can harm ecosystems and pose a 
direct threat to human health (Wei et al., 2023; Bogdanovich et al., 
2023). Over the past decades, there have been increased long-lasting 
and geographically widespread heatwaves in various regions of the 
world, as evidenced by Southern Africa (Meque et al., 2022), Europe, the 
Pacific Northwest (White et al., 2023), and Eastern China (Jiang et al., 
2023). Under the combined effects of high-intensity greenhouse gases 
and urban development, it is anticipated that heatwaves will become 
more frequent, intense, and extreme across the globe (Christidis et al., 
2020). Heatwaves are now the deadliest natural disasters, known as the 
silent killer (Luber and McGeehin, 2008). Therefore, accurate and timely 
sensing of the region where the heatwave occurs, the population it af-
fects, and the extent of its social attention are essential for heatwave 
preparedness and response.

Exposure to extreme heat can lead to a significant increase in mor-
tality (Giorgini et al., 2017), mental health issues (Thompson et al., 

2018), and substantial economic losses (Hsiang et al., 2017). In general, 
previous studies on heatwave exposure primarily utilized earth obser-
vations and statistical data to monitor ambient temperature and hu-
midity, which makes it hard to quantify the thermal discomfort of the 
population (Cecinati et al., 2019). On the other hand, some researchers 
capture the heat effects on public health using sanitary-type indicators 
(e.g., heatwave-attributable mortality or morbidity and hospital ad-
missions). However, due to sample sparsity and annual statistical scale, 
current datasets can hardly meet existing requirements for large-scale 
and timely estimates of public attention to heatwaves, especially in 
developing countries.

Social media has become an essential tool for assessing damage from 
major natural disasters such as earthquakes, floods, hurricanes, and 
wildfires, offering comprehensive geographical coverage and high data 
density (Huang et al., 2022; Feng et al., 2022; Xiao et al., 2015). Uti-
lizing social sensing data provides three key advantages in evaluating 
heatwave effects. Firstly, the extensive reach of social media allows for 
analysis over large geographical areas. Secondly, user-generated content 
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related to heat, such as tweets, captures a holistic view of thermal 
comfort by reflecting not only meteorological conditions like tempera-
ture and humidity but also socio-economic and demographic factors 
affecting adaptability (Song et al., 2020; He et al., 2019). Lastly, social 
media metrics inherently account for the differential impact of heat-
waves in various settings, factoring in population and infrastructure 
distribution, and amplifying public perceptions of heatwave severity in 
densely populated urban areas compared to remote regions.

Previous studies have proven the value and effectiveness of social 
media in understanding heat wave response and exposure, but the het-
erogeneity of social media activity and its influencing factors have 
received scant attention. Due to the complexity of human activities 
during heatwaves, it is necessary to have an in-depth comprehension of 
how a combination of meteorological variables, together with de-
mographic and socio-economic variables, influence public attention 
towards heatwaves. Additionally, research on a large geographical scale 
can better reveal these differences, assist decision-makers in making 
informed decisions, and help urban residents reduce heat stress more 
effectively. However, few studies have examined geospatial disparities 
in how people sensed heatwaves on a large geographical scale.

In this context, this study aimed to explore public attention to 
heatwaves in mainland China using geo-located social media data, a 
region whose ecosystem and social development are vulnerable to 
extreme heat events. A BERT-based language model was employed to 
extract heat-related Weibo tweets from June to September 2022. The 
associations between heatwaves and public attention were quantified 
using regression models. Local relationships had been modeled by the 
multiscale geographical weighted regression (MGWR) model, and K- 
means++ was used to identify cluster city groups based on the co-
efficients of the MGWR. Three contributions were achieved: (1) establish 
a social media data analytics framework to track and mine public in-
formation related to heatwaves; (2) characterize the local drivers of heat 
perception and explore the spatial stationarity of public attention to 
heatwaves; and (3) classify nationwide city groups by heatwave 
perception, which were consistent with the seven geographic subregions 
of China.

2. Literature review

2.1. Social media as an indicator of natural hazards

Crowdsourced social media data is widely recognized as a valuable 
resource for information mining, situation awareness, and coordinating 
relief in the natural disaster management field (Resch et al., 2018; Ji 
et al., 2022; Rui, 2023). Based on its inherent advantages of vast volume 
and low cost, researchers have developed plenty of human-centered 
approaches to enhance emergency response and inform decision- 
making. The severity and extent of a natural hazard can be detected 
by tracing digital footprints on social media (Dou & Gu, 2022).

Kryvasheyeu et al. (2016) analyzed the response of Twitter users to 
Hurricane Sandy in the United States. Their results showed that the 
volume and composition of Twitter streams correspond directly to 
hurricane threats and damage distribution, but they noted that caution 
should be taken when developing practical tools. A similar study was 
conducted in South Carolina by Li et al. (2018), which leveraged flood- 
related tweets for flood mapping in near real time. The generated flood 
mapping was found to be consistent and comparable with official 
inundation maps. Meanwhile, Fang et al. (2019) examined the social 
media activities on the Weibo platform during the 2016 Wuhan rain-
storm in China. They pointed out that flood-related Weibo activities 
were consistent with the disaster process in various aspects, including 
temporal variation, topic evolution, and spatial hotspots. In addition, 
other metrics derived from the content of tweets, such as the number of 
topics or sentiment level, can contribute a richer dimension to disaster 
assessment. For example, Li et al. (2021) demonstrated the value of 
parsing textual information from social media and spatial density to 

quantitatively estimate the geographically distributed damage in the 
2019 Ridgecrest, California, earthquake.

Geo-located social media data is particularly pertinent because it 
contains a great deal of metadata, including text and images, along with 
precise geographic locations and temporal information. As a crowd-
sourcing approach, these data provide observations about actual events 
that occurred in the real world. Although social media may suffer from 
the data quality (e.g., unstructured, noisy, and high uncertainty), sample 
bias (e.g., uneven target population and local penetration), and fake 
information (Goodchild and Glennon, 2010). Hence, this study asserts 
that geolocated social media data with high spatial and temporal reso-
lution remains a significant asset in understanding the public’s percep-
tion of natural hazards, such as heatwaves, and in assessing the potential 
effects of heatwaves on local communities. The present study proposes 
the utilization of heat-related social media activities as a surrogate 
measure for assessing the occurrence and intensity of heatwaves.

2.2. Social sensing in heatwaves

As the frequency of extreme weather events rises, researchers are 
increasingly drawn to the use of social activities to examine the public’s 
perspective on weather. Some scholars have studied the effect of 
weather conditions on sentiment expressed on social media (Li et al., 
2014). Baylis et al. (2018) conducted a representative study using data 
from 75 US metropolitan areas from both Facebook and Twitter. They 
found that weather conditions such as cold/hot temperatures, precipi-
tation, cloud cover, etc., can worsen expressions of sentiment regardless 
of whether weather-related terms are included. Furthermore, Zander 
et al. (2023) demonstrated that combining heat-related sentiment and 
monitored data can help to estimate a spatial temperature map at the 
district level. At both city and national level, Lyu et al. (2024) used 
Twitter data to map heat exposure in near real time.

Another stream of research tried to explore the relationship between 
heatwaves and human responses. As pioneers, Jung & Uejio (2017)
explored heat-related tweets in five U.S. cities. Using the autoregressive 
integrated moving average (ARIMA) time series model, they found a 
significant positive correlation between heat exposure and the number 
of tweets in three of the five cities. People’s sensitivity to heatwaves 
derived from social media and heat exposure derived from extreme 
temperatures were analyzed in Wang et al. (2021). With global Twitter 
conversations, Zander et al. (2023) investigated the intensity of Twitter 
activity and changes in individual behavior during hot days. A strong 
correspondence between the two can be identified in regions like 
Argentina, Australia, the USA, and South Asia.

Despite the success of these studies, there are still significant theo-
retical and technical problems with the use of social media data for 
heatwave-related research. Important technical problems include how 
to mine the information related to thermal perception in the massive 
data. With the increasing amount of data generated by social media, it is 
necessary to develop a social media data mining framework to extract 
useful information from social media data and conduct comparative 
analysis across events and spaces. In terms of theoretical challenges, a 
major issue is the social and geographical differences that influence 
public attention on social media. This disparity can have serious con-
sequences for emergency management and disaster recovery capabilities 
(Zou et al., 2023; Yuan et al., 2021). To solve the above challenges, this 
study takes the summer heat wave event in China in 2022 as an example 
to explore the extraction, spatio-temporal patterns, and driving factors 
affecting public attention to heatwaves on social media platforms.

3. Material and methods

This study employs a four-step research strategy. Firstly, we 
collected Weibo data, weather data, and other geographical data from 
open-source platforms. The next step was to fine-tune the pre-trained 
Bert-based model and employ the most effective models to identify 
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tweets related to heatwaves. Thirdly, we proposed and calculated in-
dicators of public attention to heatwaves, such as the cumulative in-
tensity of heat. The last step included analyzing the temporal-spatial 
distribution patterns of social activities and modeling the correlation 
between heatwaves and public attention (Fig. 1).

3.1. Study area and data

3.1.1. Study area
In the past seventy years, the average annual surface temperature in 

China has risen significantly, at a rate of 0.26 ◦C per decade. The 
warming rate of China is greater than the global average for the same 
period, which is an area of concern for global climate change. During the 
summer of 2022, the eastern region of China experienced the most se-
vere heatwaves since 1961, lasting 79 days and encompassing an area of 
over 500 km2. Using the entire nation as a research object, it is possible 
to effectively examine the influence mechanisms of various physical 
environments and social-economic factors on heat perception during 
heatwaves and provide regional heat-risk references.

3.1.2. Weibo data
Geolocated Weibo tweets within China from June to September 2022 

were collected through the Weibo API, with 10 million tweets created by 
over 3 million unique users. To obtain tweets related to the heatwaves, 
keywords filtering method were adopted, including: hot (热), high 
temperature (高温), heatstroke (中暑), sunburn (晒), sunbaked (烤), 
sultry (闷).

Based on verification type, we categorized the Weibo users into two 

groups: ordinary users and media users. Specifically, the types of media 
users who verify include government, enterprise, media verification, 
and celebrities. During the registration process, a media account user 
can also choose a gender. Due to the lack of a reliable way to distinguish 
between ordinary users and media users on Weibo, we chose not to 
exclude a small proportion of media users accounts.

By conducting data collection, processing, and analysis, it is possible 
to obtain a comprehensive user profile that includes information like 
gender, age, geographic location, number of fans and followers, total 
number of Weibo posts, statistics on retweets, comments, as well as the 
heatwave perception expressed in text. Within the 3,647,842 Weibo 
users, the percentage of male and female users is 29.79 % male to 70.21 
% female. In terms of geography and gender distribution, Weibo users 
(particularly females) in their 20 s are obviously more enthusiastic about 
discussion. As the heatwaves took place in China, the local users were 
enthusiastic about the discussion.

The demographic data came from Weibo user profiles at the indi-
vidual level, including unique IDs and genders. Based on this informa-
tion, two user information indicators were constructed, including 
penetration rate (number of Weibo users divided by the population of 
each city) and user sex ratio (number of male Weibo users divided by the 
total number of Weibo users).

3.1.3. Meteorological and environmental data
A series of explanatory variables as inspired from previous studies 

were collected to understand public response in extreme heat (Wu et al., 
2024; Hass et al., 2021). The variables could be generally categorized 
into environmental, meteorological, and social (Table S1).

Fig. 1. Workflow of this study.
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Meteorological and environmental data were taken from different 
open data platforms. Climate-related data, including hourly air tem-
perature, precipitation, wind speed, dew point temperature, and sea 
level pressure, were collected from the National Meteorological Science 
Data Center (https://data.cma.cn). Dew point temperature significantly 
influences the relative perception of heatwaves by impacting our body’s 
ability to cool down through sweat evaporation (Cecinati et al., 2019). 
Higher dew points, indicating higher humidity, lead to a feeling of 
greater heat and discomfort, even at the same air temperature 
(Cvijanovic et al., 2023). Topographic data, including elevation and 
slope, were provided by Resources and Environmental Sciences 
(https://www.resdc.cn). Land cover data include the monthly global 
normalized difference vegetation index (NDVI) datasets with a spatial 
resolution of 1 km * 1 km, collected from MOD13A3 and downloaded 

from the EOSDIS website. Water area and impervious surface data with 
30 m fine-scale spatial resolution were collected based on the China land 
cover dataset (CLCD), which was the first Landsat-derived annual 
product for China from 1990 to 2019 with high-resolution land cover 
maps (Yang and Huang, 2021).

In terms of demographic and socio-economic factors, nighttime light 
data was obtained by integrating DMSP-OLS and SNPP-VIIRS (Wu et al., 
2021). Other social-economic variables, such as gross domestic product 
(GDP) per capita, percentage of population over 60 years old, and people 
with a college degree or higher, were collected from the 2019 China City 
Statistical Yearbook at the city level.

Fig. 2. Architecture of the BERT model for heat-related text classification.
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3.2. Methods

3.2.1. Classify Weibo tweets using BERT
The extraction of heat-related tweets is a typical text classification 

task in natural language processing, in which a given document is 
assigned to predefined categories according to its content. BERT is a pre- 
trained model that acquires extensive linguistic knowledge and 
contextual relationships through pre-training on large-scale text 
corpora. Previous studies have used the BERT model to screen social 
media data with high precision (Wang et al., 2021; Rui, 2023). However, 
training a model from scratch is time-consuming and computationally 
expensive. By employing fine-tuning techniques, BERT can be better 
adapted to specific downstream tasks such as sentiment analysis, ques-
tion answering systems, and text classification, thereby enhancing the 
performance of these tasks.

In this study, two-stage fine-tuning techniques were designed to 
implement heat-related text classification: (1) in-domain pre-training: 
fine-tuning Chinese-BERT-wwm with Weibo corpus to extract Weibo 
text contextual embedding; (2) classification task fine-tuning: further 
fine-tuning pre-trained Chinese-BERT-wwm on heat-related tweet clas-
sification tasks. Fig. 2 is a high-level description of the BERT-model. 
Chinese BERT with whole word masking (Chinese-BERT-wwm) model, 
which is more effective for Chinese text embedding, was employed to 
fine-tuning solution. In this study, the input comprises a single tweet 
extracted from corpus. Initially, the tweet is tokenized into a sequence 
that includes a special CLS token, which represents the overall meaning 
of the sentence. Subsequently, these tokens are processed through the 
BERT model. The output from the model consists of vectors corre-
sponding to each token, where the vector associated with the CLS token 
encapsulates the semantic representation of the entire sentence. The first 

stage of fine-tuning is to obtain an accurate representation of the CLS 
vector. In the subsequent phase, the BERT model training parameters of 
the first stage are fixed. The CLS vectors are then fed into a fully con-
nected layer. This network model is trained through supervised learning, 
utilizing labels to classify texts related to heat. Four indicators were 
employed to evaluate the model’s performance: accuracy score, recall, 
precision, and F1 score.

3.2.2. Public attention metrics
The study constructed two metrics: the number of heat-related 

tweets (NHTs) and the ratio of heat-related tweets (RHTs) to analyze 
the public attention to heatwaves. The NHTs reflected the social con-
sequences of heatwaves and their extent. Heatwaves that occur in major 
cities were more noticeable than those that occur in desert regions. 
Similarly, more people would be impacted by heatwaves in densely 
populated metropolitan areas than in sparsely populated areas. The 
RHTs were defined as the number of tweets divided by the total number 
of tweets posted within the same period. The ratio of heat-related tweets 
had been proven to be an effective indicator that reflects the public 
attention to heat and was highly related to the intensity of heatwaves. 

RHTs =
# heat − related tweets

# all tweets
(1) 

3.2.3. Heat-related metrics
There is no universal definition of a heatwave due to the variety of 

climatic conditions and socio-demographic characteristics across the 
world. Typically, researchers classify heatwaves based on their daily 
maximal temperature, duration, and spatial extent (Wu et al., 2023). For 
this study, we adopted the definition of a heatwave provided by the 
China Meteorological Administration, which is defined as at least three 
consecutive days with a maximum daily temperature exceeding 35 ◦C 
(Zhao et al., 2023).

To make easier comparisons among different cities, this study used 
the heat cumulative intensity as a useful metric that integrates the 
heatwave frequency and intensity into a single indicator. According to 
Perkins-Kirkpatrick and Lewis (2020), the formula for the heat 

Table 1 
Performance of prediction on the verification dataset.

Category Number Precision Recall F1-score

Heat-relevant 712 0.99 0.96 0.97
Not relevant 688 0.96 0.99 0.97

Fig. 3. Temporal trend of urban heat perception. (a) Temporal trend of total tweets and NHTs; (b) RHTs and mean temperatures observed at monitoring stations by 
hour; (c) Global trend of RHTs and the number of cities experiencing heatwaves; (d) Temporal correlation of RHT, NHT and HCI.
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cumulative intensity can be expressed as follows: 

Heat cumulative intensity =
∑d

1
(Tmax − T35) • Hd (2) 

Tmax the maximum daily temperature and T35 is the temperature 
threshold for heatwaves in this study. Hd is an indicator variable (Hd = 1 
if heatwave happened, else Hd = 0.)

3.2.4. Modeling geographic schema of heatwave perception

3.2.4.1. Statistical analysis of RHTs and NHTs. The statistical modeling 
process mainly includes two dimensions: the temporal dimension and 
the spatial dimension. Regarding the temporal dimension, we first 
investigated the correlation between the ratio of heat-related tweets 
(RHTs) and the number of cities experiencing heatwaves throughout the 
study period. Then, the lag correlation between the RTHs and NTHs, as 
well as the number of cities enduring heatwaves, were analyzed. 
Simultaneously, daily RHTs and NHTs were conducted to obtain an 
overall picture of the temporal trend for heat-related Weibo tweets. In 
the spatial dimension, we utilized the Moran’s I statistic to explore the 
global spatial autocorrelation of heat-related social media activities 
across China at city-level with a simple first-order queen-weighted ma-
trix. The LISA statistics method was conducted to identify the hot spots 
and cold spots of heat-related activities and comprehend the spatial 
association of two heat-related indicators comprehensively.

3.2.4.2. MGWR model for RHTs. Variable Selection: There could be 
significant correlations between variables. Based on the correlation co-
efficient, variables had been filtered. To reduce the multicollinearity 
problem, a Pearson’s correlation analysis was conducted to evaluate the 
correlations between pairwise indicators, including metrological and 
environmental variables as well as demographic and socio-economic 
dimensions with eight factors and 24 variables, as a guide for 

selecting variables for further analysis. Pearson’s r and partial correla-
tion coefficient were used to quantify the relationships between the 
underlying factors and the human response variables. The variables 
retained need to satisfy that both absolute values of the above two 
correlation coefficients are greater than 0.10 at the 0.05 level of 
significance.

Regression analysis: Based on the reserved variable, a set of hier-
archical linear regression models with ordinary least squares (OLS) were 
constructed to understand the associations between the underlying 
factors and heat perception. The Global Moran’s I residual test was taken 
to examine the assumptions about the independence test of explanatory 
variables. Since the global spatial autocorrelation exists as the result of 
the RHTs, we further constructed the geographically weighted regres-
sion to evaluate the spatial non-stationarity of estimates and explored 
the local variations in the aspects of strength and direction among var-
iables. Furthermore, the MGWR model was used to investigate probable 
variables impacting heat perception since impact factors may play 
diverse roles throughout a geographical range (Mohammadi et al., 
2023). The MGWR model was proposed by Fotheringham et al. (2017), 
whose goal is to address the difficulty of dealing with multi-scale spatial 
phenomena with conventional GWR techniques. MGWR offers a multi- 
scale framework whereby each explanatory variable is assigned its 
own geographic scale.

Spatial clustering of coefficients: Clustering techniques were 
commonly used to identify patterns in datasets. In this study, the K- 
Means++ algorithm was employed to divide the cities into k distinct 
clusters based on the similarity of the MGWR regression coefficients. 
Clustering aims to minimize the distance between sample points within 
the same cluster while maximizing the distance between clusters. The 
silhouette score was used to evaluate the clustering outcomes for the 
selected k values. When the shear score is close to 1, it indicates that the 
data instance is close to the center of its cluster, while when it is close to 
0, it indicates that the sample is an outlier, and when it is − 1, it indicates 

Fig. 4. Spatial distribution of heatwave perception and LISA clusters at city-level.
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that the observation has been incorrectly assigned to a cluster. Spatial 
data analysis and modeling were performed by GWR4.0, ArcGIS 10.2, 
SPSS, and Python 3.

4. Results

4.1. Prediction accuracy and verification of heat-related tweets

We fine-tuned the Chinese-BERT-wwm model and ran a total of 10 
epochs. Of the 7,000 labeled samples, 80 % were used as training 
samples and test samples, and 20 % were used as verification sets (1,400 
samples). Table 1 displays the accuracy and efficacy of the model on 
verification sets. The prediction accuracy on the verification set has been 
raised by 2 % via the process of fine-tuning the Weibo corpus. Moreover, 
compared to linear regression, using a convolutional layer as a classifier 
can simultaneously achieve more balanced classification performance.

4.2. Spatiotemporal variation of public attention to heatwaves

4.2.1. Temporal patterns of urban heat perception
This study used previously classified datasets with about 157,892 

heat-related Weibo tweets to explore temporal patterns of urban heat 
perception. Fig. 3 provides a comprehensive depiction of the statistical 

Table 2 
Correlations analysis between predictors and NHTs and RHTs.

Category Variable RHTs NHTs

Correlation Partial correlation Correlation Partial correlation

Heatwave HCI 0.761* 0.635* 0.228* 0.258*

Topographic Slope 0.051 − 0.017 − 0.058 0.093

Geographic Lon − 0.092 − 0.332 0.096 − 0.032
Lat − 0.291 0.113* − 0.106 0.043

Climatic factors MeanMaxTemp 0.506 − 0.074 0.183* − 0.103
Precipitation − 0.117* − 0.139* 0.021 0.026
DPT 0.303* 0.155* 0.197* 0.105
VPD − 0.027 0.012 − 0.030 − 0.164*
Wspeed − 0.066 0.029 0.046 − 0.026

Land cover NDVI 0.060 0.059 0.004 0.024
PctWater 0.165* 0.083 0.264 0.040
PctImper − 0.012 − 0.019 0.315 0.094

Economic PerGDP 0.179* 0.072 0.519* 0.135*

Social attributes PctOld 0.093 0.121* − 0.059 − 0.169*
AvgSchool 0.014 − 0.027 0.455* 0.278*
PopDensity 0.131* − 0.161* 0.451* − 0.134*
Male_Ratio 0.083 0.015 0.092 − 0.231*

User information USRatio − 0.089 0.097 − 0.147 0.078
PenRate 0.002 0.079 0.486* 0.180*

HCI: Heat cumulative intensity; MeanMaxTemp: Mean max temperature.
DPT: Dew point temperature; VPD: Vapor pressure deficit; Wspeed: Wind speed.
PctWater: Percent land area with water; PctImper: Percent Impervious area.
PctOld: Population over 60; AvgSchool: Average years of schooling.
USRatio: User sex ratio; PenRate: Penetration rate.
Note: *p-value < 0.05.

Table 3 
OLS regression for explaining the NHTs with HCI.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Intercept 260.366 − 567.234 − 4752.571 133.853 − 129.951 − 2555.02
HCI 4.177     0.226
PerGDP  0.519    0.069
AvgSchool   9.119   0.182
PopDensity    0.451  0.241
PenRate     0.486 0.315
Adjust R2 4.9 % 26.8 % 20.4 % 20.1 % 23.4 % 42.3 %

Table 4 
OLS regression for explaining the RHTs with HCI.

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 0.830 1.426 0.618 1.201 0.735
HCI 0.761    0.711
Precipitation  − 0.117   − 0.093
DPT   0.303  0.106
PopDensity    0.131 0.071
Adjust R2 57.80 % 11 % 8.90 % 1.40 % 58.80 %
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trends in social media usage during heatwave periods. Examining the 
hourly social media activity throughout the day, the overall tweet ac-
tivity and NHTs reach their nadir at 4:00. Notably, NHTs reach their 
peak activity around 16:00, and their other peak is approximately 22:00 
(Fig. 3a). This phenomenon was potentially attributed to the heightened 
influence of high-temperature heatwaves on nocturnal human activities, 
especially disturbing individual sleep, manifested in sleep deprivation 
and sleep exploitation. Regarding RHTs, the highest frequency occurs at 
16:00, aligning with the trend of average temperature (Fig. 3b). The 
mean temperature is the average temperature of 2419 stations from 
June to September 2022 at 2419 stations from the National Climate 
Center, China Meteorological Administration for 24 h. Compared to the 
indicator of heat-related sentiment proposed in Murakami et al. (2016), 
hourly mean RHTs in this study showed a more consistent association 
with temperature trends. For daily activity from June 1 to September 31, 
the number of cities experiencing heatwaves shows a correlated fluc-
tuation with heat-related tweet activity, with a correlation coefficient 
exceeding 0.7 (Fig. 3c). Additionally, both NHTs and RHTs demonstrate 
a high correlation with the HCI (Fig. 3d). The correlation coefficients 
were 0.78 for HCI and RHT, and 0.75 for HCI and NHT. RHTs correlated 
more strongly with heat related indexes (e.g., HCI and the number of 
cities experiencing heatwaves) than NHTs.

4.2.2. Spatial distribution and clustering of urban heat perception
Two metrics (NHTs and RHTs) of human heatwave perception across 

China were presented in Fig. 4. Both city-level NHTs and RHTs exhibited 
significant positive global spatial autocorrelation (Moran’s I = 0.03, z- 
score = 4.73, p-value < 0.001 for NHTs, and I = 0.22, z-score = 31.60, p- 
value < 0.001 for RHTs). Through LISA clusters, the High-High LISA 
clusters were observed for both NHTs and RHTs, as shown in Fig. 4. High 
NHTs were mainly distributed in densely populated areas in the eastern 
and southern regions of China, and less in the western regions. The 
average value of NHTs was 422. High-High clusters for NHTs were 
mainly distributed in municipalities and provincial capitals in the east 
and south regions (e.g., Beijing, Shanghai). High-High clusters for NHTs 
appeared in the provincial capitals and municipalities. RHTs displayed a 
significant spatial autocorrelation with an average value of 1.22 %. Low- 
Low clusters for HWTs were identified in the north and southwest of 
China. High-High for HTWs were primarily found in the Chengdu- 
Chongqing regions and the middle and lower reaches of the Yangtze 
River, including the Wuhan and Suzhou regions.

4.3. Associations between public attention and heatwaves

4.3.1. Heat-related variables from OLS model
Due to the availability of GDP data for only 321 cities from the year 

2019, subsequent analyses in this study are confined to these cities 
(Fig. S1). We conducted a correlation analysis and ordinary least squares 
multiple linear regression models with corresponding potential 
explanatory variables to explain NHT and RHT (Table 2). For NHTs, five 
variables—HCI, PerGDP, average years of schooling, population density, 

and penetration rate—are significant at the 0.05 level, with both the 
correlation coefficients and partial correlation coefficients exceeding 
0.1. Among these, HCI accounts for the smallest proportion of variation 
in NHTs, explaining only 4.9 % of the variance (R2 = 4.9 %, Table 3). 
HCI, precipitation, dew point temperature, and population density, were 
significantly correlated to RHTs (Table 4). The most important factor 
was HCI, which accounts for 57.8 % of the variation of RHTs. The 
supplementary materials provided the correlation between cumulative 
heat wave intensity and NHT at different threshold temperatures to in-
crease the robustness of the results (Table S2).

4.3.2. Spatial heterogeneity of heat-related tweets
The spatial autocorrelations of OLS residuals of RHTs and NHTs were 

examined, and the results indicated that RHT residuals are not inde-
pendent and can be fully explained by variables (Moran’s I < 0.001, z- 
score = 0.224, p-value = 0.822 for NHTs, and Moran’s I = 0.22, z-score 
= 14.370, p-value < 0.001 for RHTs). Therefore, the GWR and MGWR 
models were conducted for RHTs to eliminate modeling errors induced 
by the spatial autocorrelation of variables.

In Table 5, we compared the GWR and MGWR models’ bandwidth 
(BW) statistics and regression coefficients. Cross-validation and the 
Gaussian kernel were used to optimize bandwidth selection for the GWR 
and MGWR models. The GWR model allocated a constant bandwidth 
(BW = 65, or 20 % of the total sample) to each independent variable. As 
shown in Fig. 5, the Moran’s I of the standard residuals of the GWR and 
MGWR models were − 0.011 (p-value = 0.989) and − 0.015 (p-value =
0.437), indicating the successful eradication of spatial randomness and 
spatial autocorrelation of the residuals. The GWR and MGWR models 
explained more variance than the OLS model, and their respective 
adjusted R2 values were 0.874 % and 0.855 %. Fig. 5 shows that the 
spatial variation of local prefecture-level cities R2 generally decreased 
from west to east.

The MGWR model, in contrast, assigns a distinct bandwidth to each 
variable. Clearly, the standard deviations of GWR coefficients were 
greater than those of MGWR coefficients, and the minimum and 
maximum values of GWR coefficients frequently have opposite signa-
tures. In the GWR model, for instance, the statistical intensity range for 
the cumulative heat wave was between − 0.118 and 1.351, with a 
standard deviation of 0.360. The statistical value of the coefficient in 
MGWR varied between 0.038 and 1.299. Therefore, the proportion of 
individuals posting microblogs about heat was proportional to the in-
tensity of heatwaves. Consequently, the negative coefficient of GWR 
may run counter to prior expectations. Furthermore, due to overfitting, 
GWR’s narrow bandwidth leads to high coefficient variability and 
extreme values in its coefficients. This made the interpretation of GWR’s 
results uncertain. In summary, the MGWR model used in this study can 
effectively prevent symbol inversion and produce more accurate esti-
mation results.

Fig. 6 illustrated the spatial visualization of GWR and MGWR co-
efficients and significance (i.e., |t-values| greater than 1.645). The co-
efficient of MGWR was statistically more significant than that of GWR. 

Table 5 
Statistics of GWR and MGWR models for RHTs.

Variable GWR MGWR

BW Mean Min Max STD BW Mean Min Max STD

Intercept 65 − 0.043 − 0.877 1.04 0.491 46 0.015 − 0.66 0.868 0.406
HCI 65 0.383 − 0.118 1.351 0.360 86 0.332 0.038 1.299 0.301
Precipitation 65 − 0.152 − 0.798 0.544 0.275 256 − 0.156 − 0.218 − 0.104 0.033
DPT 65 0.293 − 1.141 1.569 0.344 319 0.32 0.313 0.332 0.004
PopDensity 65 0.129 − 0.411 0.654 0.191 319 0.052 0.045 0.066 0.005

Performance R2 = 0.874, Adj. R2 = 0.852 
AIC = 344.503, AICc = 362.523 
BIC = 529.013

R2 = 0.855, Adj. R2 = 0.841 
AIC = 348.598, AICc = 354.568 
BIC = 457.887
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Fig. 5. The comparison of effectiveness tests for GWR (left) and the MGWR (right) models.
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The MGWR coefficients displayed across the maps for HCI, Precipitation, 
DPT, and Population Density reveal distinct spatial patterns that suggest 
region-specific interactions between these variables and public heat 
response. Higher HCI coefficients are concentrated in central and 
western areas, especially Xinjiang and Tibet. Precipitation coefficients 
are generally negative, with less negative values in the southeast. DPT 
shows a uniformly positive association, particularly pronounced in the 
southwest. The population density coefficient is the highest in the north, 
which indicates that population factors play an important role in heat 
perception. These patterns underscore the regional variability and the 
importance of geographic-specific analyses in understanding the im-
pacts of environmental and demographic factors.

4.3.3. Cluster city groups based on public attention to heatwaves
The cities in the study area were clustered into six groups using the K- 

means++ method based on four factors of the MGWR model. The cluster 
city groups were consistent with the seven geographic subregions of 
mainland China, which are North China, Northwest China, Southwest 
China, Central China, South China, Northeast China, and Eastern China, 
and subdivided according to climate and socioeconomic development 
(Fig. 7a and b). Cluster city groups 1, 2, 3, and 5 were located in North 
China, Northwest China, Northeast China, and Eastern China. It is worth 
noting that cluster city group 4 combines Central China and South China 
into one cluster.

Based on the average coefficient of grouping, the primary determi-
nant that affects RHTs was the HCI metric. The HCI affected China the 
least in the east and the most in the west, which includes South China 
and Northwest China. The second reason was rainfall. Rainfall affects 
Eastern China the most, while it affected Northwest China and 

Southwest China the least. Overall, the cluster city groups based on the 
level of public attention towards heatwaves revealed notable regional 
disparities in inhabitants’ sensitivity to heat. Moreover, there were 
varying degrees of variance in sensitivity observed throughout the seven 
geographic subregions of mainland China. These associations were 
probably due to regional disparities in the rate of climate variable 
fluctuations, such as precipitation and temperature. It was worth noting 
that ongoing warming trends have further impacted the contemporary 
climate system in mainland China.

5. Discussions

5.1. The innovation of heatwave perception from Weibo

From a new perspective, this study introduced the theoretical 
framework of heatwave perception using geolocated Weibo data. Each 
user of Weibo was considered a data source, and a large language model 
was utilized to analyze heat-related Weibo tweets. This study fine-tuned 
the Chinese-BERT-wwm model on a large microblog corpus and trained 
annotated text using a convolutional layer classifier. This data process-
ing process enhances classification accuracy and efficacy significantly. 
Subsequently, the impact of heatwaves on residents can be fully revealed 
at a more comprehensive level and at a finer temporal resolution (daily 
scale). Based on high-relevance tweets, we revealed the associations 
between public attention and heatwaves. Individual perception lag may 
explain the one-day spatial latency between social activity and cities 
experiencing heatwaves, which may be due to the perception lag of 
individuals. The objective was to investigate the spatiotemporal varia-
tions of environment, demographic, and economic-social factors 

Fig. 6. Spatial distributions of (a) GWR and (b) MGWR coefficients.
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leveraging public attention derived from Weibo to heatwaves in 
geographic subregions across China.

As predicted, the results of cluster city groups showed that heat cu-
mulative intensity (HCI) was associated with social activities. The HCI 
could explain the 57.8 % variation for RHTs but 4.9 % for NTHs. Spe-
cifically, NTHs were primarily influenced by socioeconomic and de-
mographic attributes such as per capita GDP, population density, and 
penetration. As for RHTs, by contrast, it depended on environmental 
factors (i.e., HCI, precipitation, dew point temperature) and population 
density.

5.2. Geographic and demographic disparities of heatwave perception

Remote areas, such as midwest cities in China, require further 
investigation because their perception of heatwaves and behavioral re-
sponses may differ from those in big cities. Geographic disparities 
among remote areas and big cities can be better understood by incor-
porating place-based factors (e.g., check-in behaviors) and identifying 
underlying disparities (e.g., GDPs). By examining the local heat risk 
perception and behavior, this study can gain a deeper understanding of 
the situation and develop appropriate adaptive responses. For example, 
certain cities on China’s mainland have higher land surface tempera-
tures in regions with a higher concentration of low-income and minority 
individuals. Individuals from remote areas may have had a lower in-
come, necessitating their engagement in income-generating activities 

during periods of extreme heatwaves. As a result, these vulnerable 
communities in remote areas require additional support and tailored 
adaptation plans. To accurately understand the impact of local climate 
and place-based factors (e.g., urban, rural) on geographic disparities in 
heatwave exposure and perception, it is necessary to have large sample 
sizes that encompass a wide variety of individuals and geographic 
regions.

As for demographic disparities, we stratified tweets into two 
different groups based on gender of poster (male and female) to evaluate 
the gender discrepancy in heatwave perception. First, we grouped 
tweets by gender, and then counted heat-related tweets from male 
posters/total tweets (MRHTs) and heat-related tweets from female 
posters/total tweets (FRHTs). Then the variables in Table 2 were 
employed to perform stepwise regression with MRHTs and FRHTs 
respectively. The regression results obtained are shown in Table S3. This 
study also emphasizes the necessity for further investigation of vulner-
able populations (senior citizens), including those who are socially 
isolated, as well as specific demographics such as elders and decision- 
makers. Addressing these spatial and demographic gaps, as well as 
enacting tailored measures, may help China protect all citizens during 
heatwaves.

5.3. Comparative assessment

Previous studies have recognized heatwaves as a major health risk, 

Fig. 7. (a) Seven subregions of China, (b) spatial distribution of MGWR coefficient clusters, (c) mean value of MGWR coefficient clusters, and (d) chord plots 
described the correspondence between geographic regions and MGWR coefficient clusters.
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but there has been less research on the public’s perception of heatwaves 
using location-based social media data. Our findings indicated that 
heatwave perceptions can fundamentally compel economic and social 
actions in China to address the risks from global or regional warming. 
This finding was comparable to the results of the Gosling et al. (2009)
study, which reviewed heatwaves during the period 2000–2007 and 
found that China was one of the most severely impacted regions. Our 
observations also indicate that female-young individuals, and in-
dividuals residing in remote regions, had a vulnerable perception of 
heatwaves. These observations were consistent with certain findings 
from previous investigations (Pappalardo et al., 2023; Liu et al., 2013; 
Semenza et al., 2008). Therefore, more research is required to enhance 
heatwave perception in various populations. This study has the potential 
to provide valuable insights for enhancing a population’s adaptive ca-
pacity during heatwaves through location-based social media data.

5.4. Limitations

The geospatial approach used in this study may obscure the city-level 
associations between public attention and heatwaves when examined at 
a more detailed spatial–temporal resolution. Moreover, it is important to 
note that this study made efforts to mitigate sample selection bias. We 
also excluded 45 cities that lacked GDP data for the year 2019, leaving a 
final sample size of 321 cities for subsequent analysis. The present 
analysis focused on excluding cities that are predominantly character-
ized by economic underdevelopment, as they tend to have a smaller 
number of urban areas and a lower overall count of social media users, 
total tweets, NHTs, and RHTs. Furthermore, the PerGDP data utilized in 
this study was sourced from the 2019 China City Statistical Yearbook. 
Conversely, the demographic and socio-economic data, including 
PctOld and PopDensity, were obtained from the seventh National Pop-
ulation Census. Meanwhile, the data pertaining to social media users 
was gathered in 2022. A future study has the potential to improve these 
calculations by incorporating the latest GDP data or data that is 
consistent on a yearly basis.

6. Conclusions

This study provides a new perspective for understanding the asso-
ciations between public attention and heatwaves in 321 Chinese cities. 
We use the MGWR model to quantify the impact of physical and socio- 
economic factors on heatwave awareness, combining geolocated Weibo 
with environmental data. The results of the regression analysis have 
revealed that heat-sensitive cities were grouped based on the co-
efficients of MGWR. Our findings highlight differences in the direction 
and magnitude of the spatial effects of environmental, demographic, and 
socioeconomic factors on public thermal perception.

Given the disparity in public attention towards heatwaves using so-
cial media data, future research on heatwave perception should include 
an examination of remote regions considering geographic and de-
mographic disparities. This is particularly important given previous 
studies on thermal comfort exposure, which have shown the existence of 
heat exposure disparities both within and between cities. The MGWR 
model’s coefficients clearly align the relationship between city groups 
and human consciousness with geographical divisions. Future in-
vestigations should also examine whether changes in municipal city 
group patterns and the distribution of public attention through time are 
associated with heatwaves.
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